Dynein and mast/orbit/CLASP have antagonistic roles in regulating kinetochore-microtubule plus-end dynamics.
نویسندگان
چکیده
Establishment and maintenance of the mitotic spindle requires the balanced activity of microtubule-associated proteins and motors. In this study we have addressed how the microtubule plus-end tracking protein mast/orbit/CLASP and cytoplasmic dynein regulate this process in Drosophila melanogaster embryos and S2 cells. We show that mast accumulates at kinetochores early in mitosis, which is followed by a poleward streaming upon microtubule attachment. This leads to a reduction of mast levels at kinetochores during metaphase and anaphase that depends largely on the microtubule minus end-directed motor cytoplasmic dynein. Surprisingly, we also found that co-depletion of dynein rescues spindle bipolarity in mast-depleted cells, while restoring normal microtubule poleward flux. Our results suggest that mast and dynein have antagonistic roles in the local regulation of microtubule plus-end dynamics at kinetochores, which are important for the maintenance of spindle bipolarity and normal spindle length.
منابع مشابه
MAST/Orbit has a role in microtubule–kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity
Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant emb...
متن کاملThe Microtubule Plus End Tracking Protein Orbit/MAST/CLASP Acts Downstream of the Tyrosine Kinase Abl in Mediating Axon Guidance
Axon guidance requires coordinated remodeling of actin and microtubule polymers. Using a genetic screen, we identified the microtubule-associated protein Orbit/MAST as a partner of the Abelson (Abl) tyrosine kinase. We find identical axon guidance phenotypes in orbit/MAST and Abl mutants at the midline, where the repellent Slit restricts axon crossing. Genetic interaction and epistasis assays i...
متن کاملThe Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division.
Controlling microtubule dynamics and spatial organization is a fundamental requirement of eukaryotic cell function. Members of the ORBIT/MAST/CLASP family of microtubule-associated proteins associate with the plus ends of microtubules, where they promote the addition of tubulin subunits into attached kinetochore fibers during mitosis and stabilize microtubules in the vicinity of the plasma memb...
متن کاملEmerging functions of force-producing kinetochore motors.
More than two decades of research has resulted in the identification of some 60 microtubule motor proteins, several of which have been implicated in mitosis. Although some kinesin super-family proteins function as microtubule depolymerases at kinetochores, such as Kinesin-8 and -13, it is now appreciated that there are only two force-producing kinetochore associated motors, the plus end-directe...
متن کاملTOG Proteins Are Spatially Regulated by Rac-GSK3β to Control Interphase Microtubule Dynamics
Microtubules are regulated by a diverse set of proteins that localize to microtubule plus ends (+TIPs) where they regulate dynamic instability and mediate interactions with the cell cortex, actin filaments, and organelles. Although individual +TIPs have been studied in depth and we understand their basic contributions to microtubule dynamics, there is a growing body of evidence that these prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 122 Pt 14 شماره
صفحات -
تاریخ انتشار 2009